Feet are parametric
even in languages with stress

Guilherme D. Garcia1 and Heather Goad2

1Ball State University, 2McGill University

gdgarcia@bsu.edu \bullet heather.goad@mcgill.ca

NELS 49, 2018
Cornell
Goal: To show that Portuguese has lexical stress, but no feet

1. Word-minimality
2. Indeterminacy of foot types
3. Antepenultimate weight effects

Despite surface similarities between Portuguese and English stress, the systems are formally very different
Stress in non-verbs:

- Right-to-left moraic trochees + final syllable extrametricality

 \[\text{agenda} \left[\theta_{\mu} (\widetilde{d\varepsilon_{\mu} n_{\mu}})_{\text{Ft}} \langle d\varepsilon_{\mu} \rangle \right]_{\text{PWd}}\]

 \[\text{Canada} \left[(\widetilde{k\varepsilon_{\mu} n\varepsilon_{\mu}})_{\text{Ft}} \langle d\varepsilon_{\mu} \rangle \right]_{\text{PWd}}\]

- Binary feet also regulate minimal word size

 \[\text{chemistry} \rightarrow [k\varepsilon m], *[k\varepsilon]\]

 \[\text{Elizabeth} \rightarrow [l\acute{I}z], *[l\acute{l}]\]

- No subminimal \((CV_{\mu})\) lexical words

 Truncation and hypocorization never result in \((CV_{\mu})\)

 \textit{Lexical words must contain one binary foot}

 (McCarthy and Prince 1986)
Stress in non-verbs:

- Right-to-left moraic trochees capture regular stress patterns

 \[
 \textit{papel} \left[\text{\textipa{pa$_\mu$ (\textipa{pe$_\mu$}1$_\mu$)$_{Ft}$}} \right]_{PWd} \quad \text{‘paper’}
 \]

 \[
 \textit{sapato} \left[\text{\textipa{sa$_\mu$ (\textipa{pa$_\mu$} to$_\mu$)$_{Ft}$}} \right]_{PWd} \quad \text{‘shoe’}
 \]

- But subminimal words tolerated & generated productively

 \[
 \textit{pá} \left[\text{\textipa{pa}} \right] \quad \text{‘shovel’}
 \]

 \[
 \textit{dou} \to \left[\text{\textipa{do}} \right] \quad \text{‘(l) give’}
 \]

 \[
 \textit{Fernanda} \to \left[\text{\textipa{fe}} \right]
 \]

- \(\approx 70\% \) of possible CV words are real words
Portuguese

Stress in non-verbs:

- Regular stress: ́H] or ́XL]
 - *papél* ‘paper’, *sapáto* ‘shoe’

- Exceptional stress:
 - ́LÍ] (3%)
 - *cáf é* ‘coffee’
 - ́XH] (11%)
 - *nível* ‘level’
 - ́XXX] (12%)
 - *patético* ‘pathetic’

This has led authors to propose **different** foot types:

- Trochees
- Trochees and iambs
- Trochees, iambs, and dactyls

See Garcia 2017
Proposal
Stress without feet

- Aside from extrametalricity, Portuguese stress \sim English stress

 But two important differences:
 1. Violations of word-minimality
 2. Indeterminacy of foot type

- 1-2 challenge the presence of the foot in Portuguese
Proposal
Stress without feet

Today: a third difference

3. Antepenultimate weight effects on stress
 Weight effects seal the fate against the foot in Portuguese and further motivate it in English
Weight effects in antepenultimate (APU) syllables

- APU stress in 12% of Portuguese non-verbs
 Previous studies: exceptional extrametricality (Bisol 1992)

 \(\text{patético} \ [\text{pa}_\mu (\text{te}_\mu \text{ti}_\mu)\langle k\text{o}_\mu \rangle] \) 'pathetic' (LLL)

 \(\text{fósforo} \ [\text{(f}s\mu s\mu f\text{o}_\mu)\langle r\text{o}_\mu \rangle] \) 'match (n)' (HLL)

- Weight effects problematic in APU position:
 marked metrical structure unavoidable
 - \(\text{HLL} \rightarrow (\text{HL})\langle \text{L} \rangle \) (uneven trochee)
 - \(\text{HLL} \rightarrow (\text{H})\text{L}\langle \text{L} \rangle \) (medial un footed syllable)
Weight effects in antepenultimate (APU) syllables

Trisyllabic shortening

▶ English

\begin{align*}
\text{sane} & \rightarrow \text{sanity} & \left[\text{'se}_\mu \text{n}_\mu \text{ti}_\mu\right], \left[\text{'s}_\mu \text{n}_\mu \text{ti}_\mu\right] \\
\text{serene} & \rightarrow \text{serenity} & \left[\text{s}_\mu \text{rn}_\mu \text{ti}_\mu\right], \left[\text{s}_\mu \text{r}_\mu \text{n}_\mu \text{ti}_\mu\right]
\end{align*}

Shortening results in more complete parse of the word into feet

ificação em antepenúltimas (APU) sílabas

Trisílabas de curto

▶ Português

\begin{align*}
\text{sane} & \rightarrow \text{sanidade} & \left[\text{'se}_\mu \text{n}_\mu \text{ti}_\mu\right], \left[\text{'s}_\mu \text{n}_\mu \text{ti}_\mu\right] \\
\text{serene} & \rightarrow \text{serenidade} & \left[\text{s}_\mu \text{rn}_\mu \text{ti}_\mu\right], \left[\text{s}_\mu \text{r}_\mu \text{n}_\mu \text{ti}_\mu\right]
\end{align*}

Acurtamento resulta em uma análise mais completa da palavra em pés

No similar process observed in Portuguese
Weight effects in APU syllables

Predictions

- If Portuguese builds feet:
 Should not find HLL \succ LLL
 I.e.: Weight-sensitivity should not be present in APU syllables

- If Portuguese doesn’t build feet:
 Weight-sensitivity should not be blocked in APU σs
 (weight effects present in final and penult σs)

Which profile – HLL or LLL – do native speakers favor?
How do Portuguese and English compare?
Experimental design

- Two forced-choice auditory tasks involving nonce words
 Speakers of Br. Portuguese \((n = 27)\) and English \((n = 13)\)
 Minimal pairs of nonce words with different stress location
 - Antepenultimate vs. penultimate stress
 - Portuguese \((n = 240^{1})\) English \((n = 180)\)

Three weight profiles: **LHL, HLL, LLL**

<table>
<thead>
<tr>
<th>Pt</th>
<th>En</th>
</tr>
</thead>
<tbody>
<tr>
<td>[gu.pla.ro] (LLL)</td>
<td>[kim.es@r] (LLL)</td>
</tr>
<tr>
<td>[bron.da.le] (HLL)</td>
<td>[lm.se.k@f] (HLL)</td>
</tr>
<tr>
<td>[bo.gren.da] (LHL)</td>
<td>[tε.prim.k@l] (LHL)</td>
</tr>
</tbody>
</table>

\(^{1}\) Also included penult vs. final stress
Experimental design

“Which of these two words sounds more natural?”

[ki.me.sər] [ki.'me.sər]
Experimental results and analysis

▶ Hierarchical logistic regressions using Stan in R (Carpenter et al. 2017)

response ~ weight +
(1 + weight | speaker) +
(1 | word)

By-speaker random effect + by-item random intercept
Experimental results and analysis

Effects relative to baseline (intercept = LLL)

Posterior distr. + 50% and 95% Highest Density Intervals

English weight effects:
\[HLL \sim LLL \]

Portuguese weight effects:
\[HLL \succ LLL \]

Positive distributions → preference for APU stress rel. to LLL
Discussion and conclusion

English: consistent with **foot-based** approach

- Weight effects regulated by moraic trochees + $\langle \sigma \rangle_{PWD}$
 - $\text{HLL} \sim \text{LLL}$
 - No subminimal words

Portuguese: consistent with **footless** approach

- Weight effects not regulated by footing
 - $\text{HLL} \succ \text{LLL}$
 - Subminimal words

Are there other languages like Portuguese?
Discussion and conclusion

French

- Stress at the right edge of the **phrase**, not word

 $[\text{lœ grã gar'sõ}], \ast[\text{lœ 'grã gar'sõ}]$ ‘the big boy’

- Subminimal words freely tolerated

 - Lexical words

 lait $[\text{lɛ}]$ ‘milk’

 - Truncation

 chimie $\rightarrow [\text{ʃi}]$ ‘chemistry’

 - Hypocorization

 Myriam $\rightarrow [\text{mi}]$

- It has been proposed that **French is footless** (Jun and Fougeron 2000)

- Portuguese more like French than like English
Thank you!

Thanks to Natália Brambatti Guzzo and Jeff Lamontagne.

This research was supported by FRQSC and SSHRC.
References I

